Acids \& Bases Chapter 19

Naming Acids [REMINDER]

- First, cover the (H) and name the anion normally.
- Sulfide.
- Next, use this key:

Example

Anion Suffix

-ide
-ate
Hydro___ic acid
___ic acid
-ite

Acid Name

 _ous acid
Remembering Acid Names

- "Ick, I ate it."
- __ic is the acid suffix for stuff otherwise ending in __ate.
- "Ite, I oust it." OR "Riteous"
- __ous is the acid suffix for stuff otherwise ending in \qquad ite.
- hydro ic acid.
- Hydro goes with halogen

Practice

- HCl
- Cl- would be chloride, so it's hydrochloric acid.
- $\mathrm{H}_{2} \mathrm{SO}_{4}$
- $\mathrm{SO}_{4}{ }^{2-}$ would be sulfate, so it's sulfuric acid.
- HClO_{2}
- $\mathrm{ClO}_{2}{ }^{-}$would be chlorite, so it's chlorous acid.

Properties of Acids

 pH is lower than 7Turn methyl orange and blue litmus paper red

Taste sour

React with active metals to produce H_{2}

React with carbonates

Acids neutralize bases

Acids React with Metals

- Acids react with metals to form salts and hydrogen gas:
- $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$ (g)
- $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$ (g)
- $\mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{H}_{2}(\mathrm{~g})$

Acids React with Carbonates

- Acid rain's effect on marble $\left(\mathrm{CaCO}_{3}\right)$:

George Washington before...

George Washington after...

Properties of Bases

- pH is greater than 7
- Turn phenolphthalein purple and red litmus paper blue
- Taste bitter, feel slippery
- Bases neutralize acids

Bases Neutralize Acids

- Milk of Magnesia is an old-fashioned stomachache cure.
- Contains $\mathrm{Mg}(\mathrm{OH})_{2}$ - magnesium hydroxide.
- Magnesium hydroxide neutralizes stomach acid, producing water and magnesium chloride (a salt).
- $2 \mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Acid/Base Definitions

- There are three different definitions of acids/bases:
- We will talk mainly about one of them:
- Arrhenius Acids/Bases
- Acids are H^{+}producers.
- Bases are OH- producers.
- Brønsted-Lowry Acids/Bases
- Acids are proton $\left(\mathrm{H}^{+}\right)$donors.
- Bases are proton $\left(\mathrm{H}^{+}\right)$acceptors.
- Lewis Acids/Bases
- Acids are electron pair donors.
- Bases are electron pair acceptors.

Arrhenius Acids

- Under the Arrhenius definition of acids, you'll also see the term $\mathrm{H}_{3} \mathrm{O}^{+}$.
- When an Arrhenius acid dissolves, it gives off H^{+}ions (protons).
- Many of those protons then join with existing water molecules, creating the hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$.

$$
\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}
$$

What to Look for...Acids and Bases

- Acids have these formulas:
- HX (aq)
- $\mathrm{H}_{\mathrm{a}} \mathrm{X}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$ (aq)
- Bases are ionic compounds and contain either:
- OH- (hydroxide)
- $\mathrm{CO}_{3}{ }^{2-}$ (carbonate)
- $\mathrm{HCO}_{3}{ }^{-}$(bicarbonate/hydrogen carbonate)
- NH_{3} (ammonia) is also a base.

pH ("potential Hydrogen")

- In pH , chemistry is the measure of the concentration of an acid.
- It's a measure of the presence of hydrogen ions $\left(\mathrm{H}^{+}\right)$, which make solutions acidic.
- The pH scale ranges from 0-14.
- Anything above 7 is basic.
- Anything below 7 is acidic.
- Anything at 7 is neutral.
- Water (neutral) has an $\left[\mathrm{H}^{+}\right]$concentration of $1 \times$ $10^{-7} \mathrm{M}$, or 0.0000001 M .

Søren Sørensen

Calculating pH

- To calculate pH from the concentration of hydrogen ions $\left[\mathrm{H}^{+}\right]$, calculate its negative logarithm:
- $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
- To calculate $\left[\mathrm{H}^{+}\right]$from pH , use this formula:
- $\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}$
- Concentration is usually in the form of molarity (M).

Calculating pH Examples

Example 1: What is $\left[\mathrm{H}^{+}\right]$if $\mathrm{pH}=9.9$?

- Answer: $\left[\mathrm{H}^{+}\right]=10.9 .9=1.259 \times 10^{-10} \mathrm{M}$

Example 2: $\left[\mathrm{H}^{+}\right]$in an acid solution is $1.5 \times 10^{-3} \mathrm{M}$. What is the pH of the solution?

- Answer: $\mathrm{pH}=-\log \left[1.5 \times 10^{-3}\right]=2.82$

Example 3: What is the pH of a solution with hydrogen ion concentration of $4.2 \times 10^{-10} \mathrm{M}$? Is it acidic or basic?

- Answer: $\mathrm{pH}=-\log \left[4.2 \times 10^{-10}\right]=9.38$
- Answer: It's basic.

pOH

- Less frequently used is pOH , a similar but opposite scale.
- $<7=$ Basic
- $>7=$ Acidic
- For the same substance, $\mathrm{pH}+\mathrm{pOH}=14$.

Calculating pOH

- To calculate pOH from the concentration of hydroxide ions $\left[\mathrm{OH}^{-}\right]$, calculate its negative logarithm:
- $\mathrm{pOH}=-\log [\mathrm{OH}]$
- To calculate $\left[\mathrm{OH}^{-}\right]$from pOH , use this formula:
- $\left[\mathrm{OH}^{-}\right]=10-\mathrm{pOH}$
- Units are M again.

Calculating pOH Example

- Example 1: What is $\left[\mathrm{OH}^{-}\right]$if $\mathrm{pOH}=2.3$? Is it acidic or basic?
- Answer: $\left[\mathrm{OH}^{-}\right]=10^{-2.3}=5.01 \times 10^{-3} \mathrm{M}$
- Answer: pOH is less than 7 , so it's basic.
pH and pOH Summary
- Acidic solutions have higher $\left[\mathrm{H}^{+}\right]$than $\left[\mathrm{OH}^{-}\right]$.
- Basic solutions have higher $\left[\mathrm{OH}^{-}\right]$than $\left[\mathrm{H}^{+}\right]$.
- Neutral solutions have equal $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$.
pH and pOH Summary

pH and pOH Summary

Self-Ionization of Water

- Though pure water is considered a non-conductor, there is a slight but measurable conductivity due to self-ionization.
- Only about one in 2 billion water molecules does this.

Ionization of Water

- In pure water at $25^{\circ} \mathrm{C}$:
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$
$\cdot\left[\mathrm{OH}^{-}\right]=1 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$
- Which is why water's neutral.
- The concentration of acid-causing $\mathrm{H}_{3} \mathrm{O}^{+}$and base-causing OH^{-}are equal.
- Fun fact: Interestingly, the neutral pH value of 7 changes with different temperatures.
- Neutral pH at $100^{\circ} \mathrm{C}$, for example, is 6.14 .
- At $0{ }^{\circ} \mathrm{C}$, it's 7.47 .

Acids Neutralize Bases

- Neutralization reactions are double replacement reactions between an acid and a base.
- They always produce a salt and water.
- $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
- $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
- $2 \mathrm{HNO}_{3}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Neutralization Reaction Practice

- $\mathrm{HCl}+\mathrm{KOH} \rightarrow$?
- $\mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$
- $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ca}(\underline{\mathrm{OH}})_{2} \rightarrow$?
- $\mathrm{CaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
- $\mathrm{HNO}_{3}+\mathrm{NaOH} \rightarrow$?
- $\mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
- $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow$?
- $\mathrm{MgCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$

Titrations

- Chemists frequently use neutralization reactions during the process of titration.
- Iitration is a way for chemists to determine the concentration of an acid or base solution using the concentration of a known solution.
- During titration, the solution whose concentration is known is called the standard solution.

Titration Demo

- Let's imagine that we've got an acid with an unknown concentration (molarity).
- We'll add a base indicator to the solution.
- It shouldn't change color because we have an acid in there.

Titration Demo

- We'll then slowly add a base with a known concentration until the indicator changes color.
- When the indicator changes, that tells us that the acid can no longer neutralize the base, meaning the neutralization reaction is done.
- When the indicator changes color permanently, we've reached our endpoint (when we stop titrating).
- The endpoint is close to, but not exactly, the equivalence point, which is when the acid and base have neutralized each other.

Titration Practice

Step 1: Write the balanced reaction.

- Remember, acids + bases form water and a salt.

Step 2: Find the moles (using the molarity) of the known solution.

Step 3: Use a mole ratio to find the number of moles of the unknown solution.

Step 4: Calculate the molarity of the unknown solution using its volume and calculated moles.

Titration Problems

- Typically, you'll need to find these things in this order:

1. Balanced equation.
2. Concentration of known solution (usually given).
3. Moles of known solution solute.
4. Moles of unknown solution solute.
5. Concentration of unknown solution.

Titration Example 1

- A 25 mL solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (sulfuric acid) is completely neutralized by 18 mL of 1.0 M NaOH (sodium hydroxide). What is the concentration of the sulfuric acid solution?
- Step 1: Find the balanced equation:
- $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

Step 2: Find the moles of the known solution.

- Remember, 25 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ was neutralized by 18 mL of 1.0 M NaOH .
- That means there are 0.018 moles of NaOH present.

Step 3: Use a mole ratio to find moles of unknown solution.

- By mole ratio, we would need 0.009 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with which to react.

Step 4: Calculate the molarity of the unknown solution.

- If there are 0.009 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 0.025 L , that means the molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 0.36 M .

Titration Example 2

- If it takes 30 mL of 0.05 M HCl to neutralize 345 mL of NaOH solution, what is the concentration of the sodium hydroxide solution?
- Answer: 0.0043 M NaOH

Titrałion Example 3

- How many milliliters of 0.45 M HCl will neutralize 25.0 mL of 1.00 M KOH ?
- Answer: 55.6 mL HCl

Titrałion Example 4

- What is the molarity of sodium hydroxide if 20.0 mL of the solution is neutralized by 17.4 mL of $1.0 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$?
- Answer: 2.61 M NaOH

Titration Example 5

- What is the molarity of carbonic acid if 25.0 mL of the solution is neutralized by 48.3 mL of 0.2 M NaOH ?
- Answer: $0.19 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$

